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Abstract
Length-based methods provide alternatives for estimating the instantaneous total mortality rate (Z) in exploited

marine populations when data are not available for age-based methods. We compared the performance of three equi-
librium length-based methods: the length-converted catch curve (LCCC), the Beverton–Holt equation (BHE), and the
length-based spawning potential ratio (LB-SPR) method. The LCCC and BHE are two historically common proce-
dures that use length as a proxy for age. From a truncated length-frequency distribution of fully selected animals, the
LCCC estimates Z with a regression of the logarithm of catch at length by the midpoint of the length-bins, while the
BHE estimates Z as a function of the mean length. The LB-SPR method is a likelihood-based population dynamics
model, which—unlike the LCCC and BHE—does not require data truncation. Using Monte Carlo simulations across
a range of scenarios with varying mortality and life history characteristics, our study showed that neither the LCCC
nor the BHE was uniformly superior in terms of bias or root mean square error across simulations, but these estima-
tors performed better than LB-SPR, which had the largest bias in most cases. Generally, if the ratio of natural mor-
tality (M) to the von Bertalanffy growth rate parameter (K) is low, then the BHE is most preferred, although there is
likely to be high bias and low precision. If M/K is high, then the LCCC and BHE performed better and similarly to
each other. Differences in performance among commonly used truncation methods for the LCCC and BHE were
small. The LB-SPR method did not perform as well as the classical methods but may still be of interest because it
provides estimates of a logistic selectivity curve. The M/K ratio provided the most contrast in the performance of the
three methods, suggesting that it should be considered for predicting the likely performance of length-based mortality
estimators.

Length-based methods for assessing exploited marine
populations are of significant interest largely because of
their applicability to the study of data-limited stocks for
which age-based methods may not be available or suitable
(Punt et al. 2013). Hard tissues, such as scales and oto-
liths, may lack distinct growth marks, for example, in
tropical fish species. Such species are often assessed using

length-based methods (Pauly 1984c) because length mea-
surements are collected both easily and nonlethally.

Historically, the most common methods used to estimate
the total instantaneous mortality rate (Z; year�1) from
length composition data have been the length-converted
catch curve (LCCC; Pauly 1983, 1984a, 1984b) and the Bev-
erton–Holt equation (BHE; Beverton and Holt 1956, 1957).
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These methods are based on a linear regression and a
moment estimator, respectively. Improvements in computa-
tional power over time have allowed for the development
and use of nonlinear models that employ derivative-based
optimization methods. Recently, Hordyk et al. (2015b)
developed the length-based spawner potential ratio (LB-
SPR) method to estimate mortality using a nonlinear model.

An analog of the age-based catch curve (Ricker 1975),
the LCCC uses the natural logarithm of catch (Cj) in the
jth length interval of a length-frequency distribution
(LFD) regressed on the relative age (t0j) at the midpoint of
the length-bin (λj). Only fully selected lengths are consid-
ered in the analysis. Under the assumption of deterministic
growth following a von Bertalanffy function (with param-
eters constant across time and cohorts), the relative age at
the jth length-bin is defined as

t0j ¼ � loge 1� kj
L1

� �
; (1)

where L∞ is the asymptotic maximum length from the
von Bertalanffy growth function. The regression is of the
form

logeðCjÞ ¼ aþ bt0j þ ej; (2)

where a and b are the intercept and slope, respectively, of
the linear regression; and ɛj is the normally distributed
residual error. Total mortality (Ẑ) is estimated using the
estimated slope of the linear regression (b̂) and the von
Bertalanffy growth rate parameter (K),

Ẑ ¼ Kð1� b̂Þ; (3)

where the circumflex (^) denotes an estimate. The slope is
positive if Z/K is less than 1 and negative if Z/K is greater
than 1. The derivation for the LCCC is provided in the
Appendix.

Similar to the age-based catch curve, the LCCC
assumes a steady-state population, with constant total
mortality (over age and time) and constant recruitment
(Pauly 1984a). Additionally, all selected fish are assumed
to be equally vulnerable to the sampling gear, and the
sample size is assumed to be large enough to effectively
represent the average population structure over the time
period considered (Pauly 1983, 1984a, 1984b). Length-con-
verted catch curves have been criticized for overestimating
Z when individual growth varies seasonally (Isaac 1990;
Sparre 1990). However, this bias has been overcome by
modified LCCCs that accommodate seasonally varying
growth (Pauly 1990). Simulations have also shown that
individual growth variability creates a negative bias, while
reduced size selectivity for smaller sizes produces a

positive bias for the LCCC (Isaac 1990). Analogous to the
age-based catch curve, a bend in the regression line could
be an indication of a change in mortality with time or
with age (Pauly 1984c; Tuckey et al. 2007). However, this
method does not generalize easily to account for nonequi-
librium conditions.

Beverton and Holt (1956, 1957) derived Z as a function
of the observed mean length,

Ẑ ¼ KðL1 � �LÞ
�L� Lc

; (4)

where Ẑ, K, and L∞ are as in equations (1) and (3); Lc is
the critical length above which all animals are fully
selected by the fishery; and �L is the mean length of ani-
mals larger than Lc. Gedamke and Hoenig (2006) pro-
vided a recent derivation of the BHE. Similar to the
LCCC, the BHE also assumes steady-state conditions,
deterministic von Bertalanffy-type growth, a constant
mortality rate of all fully recruited fish, and continuous
and constant recruitment to the fishery.

A criticism of the BHE is that it tends to overestimate
total mortality when the largest size-classes in the popula-
tion are truncated from the sample (Then et al. 2015). On
the other hand, Laurec and Mesnil (1987) and Then et al.
(2015) observed that the BHE is generally robust to indi-
vidual variability in growth. The BHE has also been criti-
cized as overly simplistic because of its stringent
equilibrium assumptions (Hilborn and Walters 1992).
Gedamke and Hoenig (2006) generalized the BHE to
allow for the estimation of total mortality from a time ser-
ies of mean lengths under nonequilibrium conditions in a
maximum likelihood framework. Further extension of this
nonequilibrium model has allowed for variable recruit-
ment by incorporating a year-specific index of recruits into
the model (Gedamke et al. 2008).

The LB-SPR mortality estimator is an equilibrium age-
structured model that converts the predicted age distribu-
tion of the catch to a length distribution. Unlike the
LCCC and BHE, variability in growth is explicitly mod-
eled, with a coefficient of variation (CV) of length at age
generally assumed to be 0.1 (Hordyk et al. 2015b). Ages
are converted to lengths via an age–length transition
matrix in which the probability of length at age sums to
1.0 for a given age. Logistic selectivity parameters are esti-
mated concurrently with mortality, allowing for the use of
the entire LFD in the likelihood function. The method
also assumes constant recruitment. Unlike the LCCC and
BHE, the LB-SPR method explicitly pairs the mortality
estimator with the biological reference points obtained
from SPR analyses for management. The same can be
done for the LCCC and BHE, although this was not the
focus of the current study.
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The LCCC has been implemented in ELEFAN II
(Pauly 1987; Isaac 1990). Currently, the LCCC can be
applied using the FiSAT (Food and Agriculture Organiza-
tion of the United Nations–International Center for Liv-
ing Aquatic Resources Management Stock Assessment
Tools) software package (Gayanilo et al. 2005). Recently,
it has been used to estimate mortality of reef fishes in
North Carolina (Rudershausen et al. 2008), Albacore
Thunnus alalunga in the Mediterranean (ICCAT Secretariat
2012), Japanese Threadfin Bream Nemipterus japonicus in
the Indian Ocean (Kalhoro et al. 2014), red king crab
Paralithodes camtschaticus in the Barents Sea (Windsland
2015), Wahoo Acanthocybium solandri in the southwest
Pacific Ocean (Zischke and Griffiths 2015), blood cockle
Anadara granosa in Malaysia (Mirzaei et al. 2015), and
Red Lionfish Pterois volitans in the Gulf of Mexico
(Rodriguez-Cortes et al. 2015). Recent applications of the
BHE and LB-SPR were cited by Then et al. (2015) and
presented by Prince et al. (2015b), respectively. The LB-
SPR method can be implemented using the R package
“LBSPR” (Hordyk 2017).

The three length-based methods have been studied indi-
vidually, but they have not been directly compared.
Importantly, the methods differ in handling selectivity.
The LB-SPR method estimates selectivity as a logistic
function, whereas the LCCC and BHE assume knife-edge
selectivity (i.e., full selectivity of animals greater than a
certain length) and, thus, only animals larger than a cer-
tain size are included in the analysis. Previous simulations
(e.g., Isaac 1990) have not examined the effect of different
decision rules for truncating the data on the performance
of the estimators. This study compares the performance of
the length-based methods in estimating total mortality by
applying these methods to populations with known
parameters. First, we examined the performance of each
of the estimators individually and relative to each other
using a common simulation framework. Second, we exam-
ined the choice of decision rules in selecting the truncation
points for the LCCC and choosing the Lc parameter for
the BHE. Third, we examined the robustness of each
method to violations in the assumptions of growth and
recruitment variability across several life histories and
exploitation scenarios. Finally, we conducted sensitivity
analyses of the three mortality estimators to total sample
size and length-bin width.

METHODS
Simulation design.— Length samples were generated

using a factorial design for von Bertalanffy K, fishing
mortality (F), growth variability, recruitment variability,
and selectivity (Table 1), accumulating to a total of 108
combinations. In this study, the different values of K and
F are presented as ratios with respect to natural mortality

(M; i.e., M/K and F/M, respectively), with M set at
0.2 year�1 for all scenarios. Ratios were used because the
relative values provide a better description of the life his-
tory and magnitude of exploitation, respectively, than the
absolute values. On a per-recruit basis, the M/K ratio
describes the balance between growth and mortality,
which affects the shape of the LFD of a population in an
unexploited state (Hordyk et al. 2015a), while Z/K
describes the shape of the LFD of an exploited popula-
tion. The F/M ratio can provide an indication of the rela-
tive impact of fishing pressure because a scalar multiple of
M is often used as a proxy for fishing at maximum sus-
tainable yield (e.g., FMSY = 0.75 M; Zhou et al. 2012).

The simulation used an age-structured model for the
population. The model was run for 25 years to burn in
deviates in growth trajectories and recruitment strength
among cohorts. Fishing was assumed to occur throughout
the 25 years, but the length distribution of the catch was
only obtained at the end of the 25 years. Growth was
assumed to vary among cohorts (Whitten et al. 2013). The
mean length (Ly,a) in year y at age a was

Ly;a ¼
L0 expðmcÞ a ¼ 0

Ly�1;a�1 þ ðLy�1;a�1

�L1Þ½expð�KÞ � 1� expðmcÞ a ¼ 1; 2; . . .;A

8><
>:

(5)

where L0 was the expected length at age 0; c = y � a
indexes the age-0 recruitment that gave rise to the cohort
of age a in year y; and mc �N �0:5x2;x2

� �
is the cohort-

specific deviation in growth increments. The L∞ was set
to 500 (arbitrary) units, L0 was set to 75 units, and ω was
set to 0.15 across all factorials. Two values of K = 0.4 and
0.1 year�1, corresponding to M/K ratios of 0.5 and 2.0,
respectively, were used in the factorial design.

Variability in length at age (ry,a,L) assumed a constant
CV to the mean length at age,

ry;a;L ¼ CV� Ly;a; (6)

with three CVs of 0.03, 0.06, and 0.09 in the factorial
design. These values were based on the evaluation of size-
at-age data of several species by Then et al. (2015).

Lognormally distributed recruitment (Ry) was simulated
as a first-order autoregressive process with autocorrelation
coefficient (q) and residual deviations (dy; Thorson et al.
2014),

logeðRyÞ ¼
dy y ¼ 1
q logeðRy�1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
dy y ¼ 2; . . .;Y

�
(7)

where dy �N½�0:5s2 � ð1� q=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
Þ; s2� (Thorson

et al. 2016); and Y is the terminal year of the age-struc-
tured model. Two levels of residual standard deviation for
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recruitment, τ = 0.6 and 1.0, were included in the factorial
design, with q = 0.45. The values of these parameters were
guided by the meta-analysis of Thorson et al. (2014).
Mean recruitment was set to 1.0 because the population
was stationary over time and the magnitude of recruit-
ment was not relevant for estimating mortality.

Three length-based selectivity patterns were used in the
factorial design: a logistic function with a broad ascending
limb (“Gradual”), a logistic function with a steep ascend-
ing limb (“Steep”), and a dome-shaped logistic-normal
function (“Dome”; Figure 1). The logistic function,
parameterized by the lengths of 50% (L50) and 95% (L95)
selectivity, defines selectivity at length L as

selL ¼ 1þ exp �logeð19Þ
L� L50

L95 � L50

� 	� 
�1

: (8)

The dome-shaped selectivity function was a piecewise-
defined function,

selL¼
n
1þexp

h
� logeð19Þ

L�L50

L95�L50

io�1
L\ ld

gðL;ld ;rdÞ=max gðL;ld ;rdÞ½ � L � ld

8<
: ; (9)

where selL is a logistic function for the ascending limb
and the right half of a normal probability density func-
tion, g(L), with mean ld and standard deviation rd for the
descending limb, with the latter standardized to a value of
1 at ld. The Steep and Gradual selectivity functions evalu-
ated the effect of logistic selectivity on data truncation
with the LCCC and BHE, while the Dome selectivity
function tested the effect of violating the assumption of
constant total mortality of fully selected lengths in all
three mortality estimators.

The population abundance (Ny,a) was defined by

Ny;a ¼ Ry a ¼ 0
sy�1;a�1Ny�1;a�1 a ¼ 1; 2; . . .;A

�
(10)

where sy,a is the survival and A is the maximum age in the
model. A maximum age of 23 years, the age when 1% of

TABLE 1. Parameter values used for data generation in the simulation study. Parameters with multiple values were included in factorial design.
Parameters L50 and L95 are the lengths of 50% and 95% selectivity, respectively, using a logistic function. Parameters ld and rd are the mean and
standard deviation of the normal probability density function, respectively, with values standardized to 1 at age ld for dome-shaped selectivity.

Parameter Symbol Values

Ratio of the natural mortality rate (M) and
the von Bertalanffy growth rate parameter (K)

M/K Low: 0.5 (K = 0.4)
High: 2.0 (K = 0.1)

Ratio of the fishing mortality rate (F) and M F/M Low: 0.25 (F = 0.05)
Medium: 1.0 (F = 0.2)
High: 5.0 (F = 1.0)

Coefficient of variation of length at age (Ly,a) CV Low: 0.03
Medium: 0.06
High: 0.09

Recruitment residual standard deviation τ Low: 0.6
High: 1.0

Selectivity at length selL Gradual: L50 = 175 units, L95 = 200 units
Steep: L50 = 175 units, L95 = 275 units
Dome: L50 = 175 units, L95 = 275 units, ld = 325, rd = 65

Recruitment autocorrelation coefficient q 0.45
von Bertalanffy asymptotic length L∞ 500 units
Expected length at age 0 L0 75 units
Cohort growth standard deviation x 0.15
Maximum age A 23 years

FIGURE 1. Length-based selectivity functions (Gradual, Steep, and
Dome; see Methods) used in the simulation.
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a cohort survives given M, was used in the simulation for
computational convenience.

To calculate survival due to length-based selectivity, a
population length–age matrix (Ny,a,λ) was created for the
beginning of each year y, where

Ny;a;k ¼ Ny;aPðk y; aj Þ: (11)

With a normal distribution for variability in length at
age, the length-at-age probability vector Pðk y; aj Þ is

Pðkjy; aÞ ¼
/ðk0jþ1Þ j ¼ 1
/ðk0jþ1Þ � /ðk0jÞ j ¼ 2; . . .; J � 1
1� /ðk0jÞ j ¼ J

8><
>: (12)

where λ
0
is the length at the lower boundary of the length-bin

with midpoint λ; j = 1, 2, . . ., J indexes the length-bins; and
/(�) is the cumulative density function of a normal distribu-
tion with mean Ly,a and standard deviation ry,a,L. The
length-bin width in the population model was 5 units (larger
bins were subsequently used for mortality estimation).

The abundance of survivors (Ns
y;a;k) at the end of year y

was calculated as

Ns
y;a;k ¼ Ny;a;k exp �ðselkF þMÞ½ �: (13)

This study used three values of apical fishing mortal-
ity, F = 0.05, 0.2, and 1.0 year�1, corresponding to F/M
ratios of 0.25, 1.0, and 5.0, respectively, with mortality
occurring after growth. Survival, which is dependent on
age and year due to cohort-specific growth, was calcu-
lated as

sy;a ¼
P
k
Ns

y;a;k

Ny;a
: (14)

To approximate continuous recruitment assumed in the
mortality estimators, quarterly time steps were used in the
simulation. Recruitment occurred quarterly, with all
cohorts within a year having the same growth trajectory
and recruitment strength. All rate parameters were
adjusted accordingly from year�1 to season�1, with
growth updated after every season.

In the terminal time step of the simulation, the length–
age catch matrix (Ca,λ) was created using the Baranov
catch equation,

Ca;k ¼ selkF
selkF þM

Ny;a;k 1� exp �ðselkF þMÞ½ �f g; (15)

and the catch-at-length vector (Cλ) was obtained by sum-
ming over ages,

Ck ¼
X
a

Ca;k: (16)

A data set was obtained by sampling 2,000 individuals
from the terminal catch-at-length vector using a multino-
mial distribution. The sample size of 2,000 was chosen to
evaluate the robustness of the estimators to the variables
in the factorial design when there is little observation
error. For each data set, 2,000 length observations were
obtained, and a length frequency histogram was generated
by dividing the data set into length-bins with a bin width
of 10 units (2% of L∞). For each factorial combination,
1,000 stochastic data sets were generated.

Mortality estimation.— To use the LCCC, a subset of
length-bins from the LFD corresponding to fully selected
lengths must be chosen for the linear regression. The LFD
typically features an ascending limb, representing some
lengths that may not be fully selected to the fishing gear,
followed by a descending limb of numbers at length (Fig-
ure 2). The first usable length-bin may be defined as the
peak of the LFD (hereafter, “Peak”; Wetherall et al.
1987), although Pauly (1983) suggested that the first size-
class to be included in the LCCC should be the size-class
immediately to the right of the most frequent size-class
(“Peak-plus”).

Because the LCCC assumes deterministic growth,
length-bins greater than L∞ must be excluded from the
analysis. Furthermore, length-bins close to L∞ may be
assigned unreasonably large relative ages. High observa-
tion error in length-bins with few observations may affect
the slope of the regression line (Isaac 1990; Punt et al.
2013). To combat this, Pauly (1983) recommended that

FIGURE 2. Histogram of a length frequency distribution (length is
expressed in arbitrary units) with the left-handed decision rules (Half-
peak abundance, Peak, and Peak-plus) used to select the length bin of
left truncation for the length-converted catch curve and the value of Lc

(critical length above which all animals are fully selected by the fishery)
for the Beverton–Holt equation in the simulation study.
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animals within 5–30% of L∞ or length-bins with fewer
than five individuals be excluded from the analysis. Such
approaches sacrifice data in an attempt to avoid bias due
to decreased selectivity by the fishing gear and overestima-
tion of the relative age of large individuals. This approach
can be problematic, however, when the sample size is low
or when only a few size-classes are available.

For the BHE, the length data are usually binned to
examine the LFD and identify the critical length Lc. The
mean length is then calculated from the subset of animals
larger than Lc. Wetherall et al. (1987) suggested that Lc

be defined as the length corresponding to the peak of the
LFD. Alternatively, Peak-plus truncation can be applied
to select a value for Lc. Consequently, length observations
from the ascending limb of the LFD are removed from
the mean length calculation for the BHE based on the
choice of Lc.

To reduce bias associated with the BHE, Laurec and
Mesnil (1987) recommended summarizing length data in
fine detail and grouping length frequencies in narrow size-
bins. Animals within 30% of L∞ were excluded from their
analyses. However, simulation analysis demonstrated that
the BHE performed well when all lengths greater than Lc,
including those larger than L∞, were retained (Then et al.
2015).

In this study, three candidate length-bins were selected
for left truncation: the first length-bin on the ascending
limb of the LFD corresponding to at least half of the fre-
quency of that at the peak (“Half-peak abundance”), the
length-bin of the peak (“Peak”), and the first length-bin
after the peak (“Peak-plus”; Figure 2). If there are few
length-bins larger than the peak, then a portion of the
ascending limb of the LFD may consist of fully selected
animals (Hordyk et al. 2015a: their Figure 7). Although

arbitrary, the Half-peak abundance decision rule can be
used to select a length on the ascending limb relative to
the Peak across a variety of shapes in the length distribu-
tion (Figures 2, 3). This decision rule has also been used
in several applications of methods evaluating length data
(e.g., ICES 2014).

Similarly, there were three candidate length-bins for
right truncation: the largest length-bin containing at least
five individuals (“5+”), the length-bin at 90% of L∞

(“90% L∞”), and the length-bin at L∞ (“100% L∞”). The
100% L∞ was chosen if the 5+ right truncation rule
selected a length-bin with a midpoint larger than L∞. For
the 90% L∞ and 100% L∞ decision rules, if the bin con-
tained no observations, then we selected the next-smallest
bin containing any observations as the truncation point.

Nine methods, labeled L1–L9, were tested with the
LCCC using the combinations of left and right truncation
(Table 2). For the BHE, the lower boundary of the three
candidate length bins for left truncation (Half-peak abun-
dance, Peak, and Peak-plus) was identified as the Lc, com-
prising methods B1–B3. No truncation was necessary to
use the LB-SPR method.

For each data set, total mortality was estimated with
the data truncation methods described for LCCC, BHE,
and LB-SPR. The values of von Bertalanffy parameters
L∞ and K used in the mortality estimators were sampled
from a bivariate normal distribution around the true val-
ues with a CV of 0.1 and a correlation of �0.9. This step
is designed to simulate the scenario in which only length
data are available and growth information is obtained
externally (e.g., via a literature search).

Performance analysis.— To quantify the performance of
the decision rules for the estimators in terms of bias and
precision, the relative percent bias (%Bias) and relative

TABLE 2. Length data truncation methods for estimating total mortality (Z) with the length-converted catch curve (LCCC) and Beverton–Holt equa-
tion (BHE). No truncation is associated with the length-based spawning potential ratio (LB-SPR) method. See Methods for a description of each trun-
cation procedure.

Method Estimator Left truncation Right truncation

L1 LCCC Half-peak abundance 5+
L2 LCCC Half-peak abundance 90% L∞

L3 LCCC Half-peak abundance 100% L∞

L4 LCCC Peak 5+
L5 LCCC Peak 90% L∞

L6 LCCC Peak 100% L∞

L7 LCCC Peak-plus 5+
L8 LCCC Peak-plus 90% L∞

L9 LCCC Peak-plus 100% L∞

B1 BHE Half-peak abundance N/A
B2 BHE Peak N/A
B3 BHE Peak-plus N/A
LB LB-SPR N/A N/A
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percent root mean square error (%RMSE) for each deci-
sion rule in each factorial combination were calculated,
respectively, as

%Bias ¼
�̂Z � Z
Z

� 100 (17)

and

%RMSE ¼ 1
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
ðẐi � ZÞ2

n

vuut
� 100; (18)

where �̂Z is the mean of the estimated total mortality rates
from n out of 1,000 data sets that produced a feasible esti-
mate; Z = F + M is the true underlying mortality rate for
the factorial combination in the simulation; and Ẑi is the
estimated mortality rate from each data set i = 1, 2, . . ., n
within each factorial combination. Unfeasible estimates
occurred with the LCCC if only one length-bin was
selected using the respective decision rule, in which case
the linear regression was not possible, or if the slope of
the regression line in equation (3) was greater than 1.0,
which resulted in a negative estimate of Z. With the BHE,
a negative Z was estimated if the mean length was larger
than L∞.

The %Bias and %RMSE were calculated for each
method in all 108 factorials. From this set, the median
%Bias and median %RMSE for each method were cal-
culated among factorials with common M/K and F/M
ratios. The median %Bias and median %RMSE were
further stratified across levels of the other factorial vari-
ables (growth variability, recruitment variability, and
selectivity) within each group of M/K and F/M.
The best decision rules can be identified as those with
the lowest absolute values of the median %Bias and the
median %RMSE.

Sensitivity analyses.— Sensitivity analyses were per-
formed with respect to sample size, length-bin, and
assumed growth parameters. For the sample size analysis,
200 and 500 length observations were selected without
replacement as subsets of the original data sets, with a bin
size of 10 units in the LFD. This analysis allowed us to
test the effect of observation (sampling) error on mortality
estimation. For the bin width analysis, mortality was re-
estimated by re-binning the data with bin widths of 25
and 50 units (5% and 10% of L∞, respectively). Sample
sizes of 2,000 were used to analyze the effect of bin width
separately from observation error. For these two sensitiv-
ity analyses, mortality was estimated again using the same
decision rules for data truncation, and the %Bias and %
RMSE were calculated for each decision rule in each fac-
torial combination. Finally, the variability in individual
estimates of mortality was also evaluated when assumed
growth parameters were stochastically sampled. All

simulations and analyses were performed in R version 3.3
(R Core Team 2017).

RESULTS
Our factorial design generated several functionally dis-

tinct LFDs based on M/K and F/M (Figure 3). Compared
to the Gradual and Dome selectivity functions, the Steep
selectivity function produced a shorter ascending limb of
the LFD, which truncated the length structure of the sam-
ple. In contrast, the Dome selectivity function only
showed a discernable difference in the descending limb
when F/M was 0.25 or 1.0.

Based on a sample size of 2,000, performance of the
methods varied the most by M/K and F/M scenarios, with
best performance of the methods when M/K was 2 in con-
junction with an F/M of 0.25 or 1.0 (Figure 4A). The
methods have the least bias in these scenarios, with the
magnitude of median %Bias being generally less than 20%
and the %RMSE being less than 50%. The ranges of the
%Bias and %RMSE among factorials were also relatively
small in these scenarios. Most methods performed simi-
larly, although LB-SPR did not perform as well as the
LCCC (L1—L9) and BHE (B1–B3) methods.

Performance was worst when M/K was 0.5 in conjunc-
tion with an F/M of 0.25 or 1.0 (Figure 4A). Although
there were some factorial combinations where the methods
produced low %Bias and %RMSE, the range in %Bias
and %RMSE of all methods was large (with the perfor-
mance metrics as high as 300–400%), indicating high vari-
ability in performance. In all cases, the bias was positive.
The median %Bias and median %RMSE were usually lar-
ger than 100%. The best-performing methods were B1
(BHE with Half-peak abundance as the Lc), closely fol-
lowed by L1 and L3 (both use the LCCC with Half-peak
abundance for left truncation).

When F/M was equal to 5, all methods improved in
terms of bias for an M/K of 0.5 (the magnitude of %Bias
was generally less than 20%) but worsened for an M/K of
2 (the magnitude of %Bias increased up to 40%) relative
to lower F/M (Figure 4A). Overall, the sign of the bias
trended from positive to negative with increasing F/M,
with the trend being most noticeable for an M/K of 0.5.
No single method appeared to perform the best when F/M
was equal to 5. Although LB-SPR had the lowest bias
when M/K was equal to 2, it also had the highest mean
square error. In other M/K and F/M scenarios, LB-SPR
did not appear to perform as well as the LCCC and BHE.

Performance Across Factorial Variables
In this section and the next section, we present the

results for B1 when M/K was equal to 0.5 and for L5
when M/K was equal to 2. Method B1 performed the best
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when M/K was 0.5 (and F/M = 0.25 or 1.0). Method L5
was chosen arbitrarily because there was no clear best
method when M/K was 2. The performance across facto-
rial variables and sensitivity analyses for individual facto-
rial combinations for all decision rules is described in the
main text, with supporting figures and tables provided in
the Supplement available separately online.

Within M/K and F/M combinations, the performance
metrics were further stratified by growth variability type,
magnitude of growth variability, recruitment variability,
and selectivity. Observed trends in performance remained
similar to those described in the previous section
(Tables S.1–S.6).

Bias and precision generally improved with increasing
growth variability when F/M was 0.25 or 1.0 (Figure 5,
Figures S.1–S.13). When F/M was equal to 5, the differ-
ences in bias and precision among different growth vari-
abilities were small to negligible. Larger %Bias and %
RMSE were associated with high variability relative to
low variability in recruitment (Figure 6, Figures S.14–
S.26), although there were negligible differences when F/M
was 5. All three methods were much more positively
biased with Dome selectivity than with the logistic selec-
tivities (Gradual and Steep) when F/M was 0.25 or 1.0
(Figure 7, Figures S.27–S.39). However, the effect of
Dome selectivity was minimal at an F/M of 5. There were

no major differences in performance common to all meth-
ods between the Steep and Gradual selectivity functions.

Sensitivity Analyses
At the sample size of 200, most methods had larger

bias and less precision compared to use of a sample size
of 2,000, but the magnitude of the difference between
sample sizes was not particularly large (Figure 4B, Fig-
ures S.40–S.52). Methods L4 and L7 were notable in that
their median %Bias was lower but their median %RMSE
was higher when the sample size was 200 instead of 2,000.
However, the general trends remained unchanged.

Length-bin width generally did not affect the %Bias
and %RMSE of the mortality estimators (Figure 8, Fig-
ures S.53–S.65). Methods L7, L8, and L9 showed
improvement in some scenarios when M/K was equal to
0.5 in conjunction with an F/M of 0.25, where larger
length-bins performed better, but these scenarios still
appeared to be outliers. The magnitude of the perfor-
mance metrics remained large (%Bias > 100%) for these
scenarios.

We examined the correlation of total mortality esti-
mates with the assumed values of L∞ and K (Figure 9). In
general, higher estimates of mortality were obtained with
a larger value of L∞. However, underestimates of Z did
not often occur with the low-M/K scenario and when F/M

FIGURE 3. Expected length frequency distributions (length is expressed in arbitrary units) obtained from the sum of 1,000 data sets from the
simulation stratified by the factorial design for M/K (ratio of natural mortality [M] to the von Bertalanffy growth rate parameter [K]), F/M (ratio of
fishing mortality [F] to M), and selectivity. Selectivity functions correspond to those in Figure 1. In all panels, medium growth variability and low
recruitment variability were assumed in the sample. Dashed vertical lines indicate an asymptotic length (L∞) of 500 units (Table 1).
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was 0.25 or 1.0. On the other hand, when F/M was 5 (for
both M/K scenarios), overestimates of Z did not often
occur.

DISCUSSION

Performance of Mortality Estimators
Our simulations suggest that the M/K ratio strongly

affects the performance of the three length-based methods,
with poor performance at low M/K for all three methods.
This finding is consistent with previous simulations on
LB-SPR (Hordyk et al. 2015b). When M/K is low, the
peak of the LFD may not correspond to the true length
of full selectivity (Figure 3). The best decision rules for
both the LCCC and BHE used half-peak abundance
length as the left truncation point (methods L1 and L3 for
the LCCC; method B1 for the BHE), although there was
still a large bias associated with them. When M/K was
high, there was no clearly superior method in both bias
and precision.

The performance of all three length-based methods
worsened in situations with extreme shapes in the LFD
(i.e., low M/K with low F/M or high M/K with high F/M;
Figure 3). In spite of this, if a stock is exploited over a

broad range of sizes, then a qualitative assessment of the
mortality rate is still possible based on life history and the
shape of the LFD. High mortality can be inferred with
truncation of the size structure due to low survival of ani-
mals to large size-classes. Populations with low M/K and
low F/M ratios will have a protracted ascending limb due
to the “pile-up” effect, where there are many large animals
in the LFD due to low mortality. The use of length as a
proxy for age by assuming deterministic growth in the
LCCC and BHE did not appear to work well in such sce-
narios, as a much more substantial portion of the length
distribution consisted of lengths larger than L∞ due to
variability in growth (Figure 3). However, contrary to
what might be expected, the LB-SPR method, which
explicitly models variability in growth and selectivity
(removing the need to truncate the data to meet model
assumptions), did not perform more reliably than the
LCCC or BHE in these situations.

In our study, all three length-based methods were
robust to high growth variability. This result is surprising
for the LCCC and BHE because both methods assume no
variability in growth. Previous simulations with the LCCC
showed that the estimator performed better with less
growth variability (Isaac 1990), although Then et al.
(2015) found that the BHE performed better with higher

FIGURE 4. Relative percent bias (%Bias; top grids) and relative percent root mean square error (%RMSE; bottom grids) from the simulation study
when the data set sample size was (A) 2,000 and (B) 200. For each method, factorial combinations are stratified by M/K (ratio of natural mortality
[M] to the von Bertalanffy growth rate parameter [K]) and F/M (ratio of fishing mortality [F] to M). Numbers and horizontal lines in the violin plots
indicate median %Bias and %RMSE, with the numbers rounded to the nearest whole number for clarity. The shape of the violin plots shows the
distribution of values. Asterisks and shaded violin plots indicate the method (defined in Table 2) with the lowest median value in each grid cell (not
subject to rounding error). Rows in each grid have separate scales on the y-axis to show the shape of the violin plots.
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growth variability if the selectivity was dome-shaped. On
the other hand, it was not surprising that LB-SPR per-
formed worse when the CV of growth in the population
was lower than that assumed in the estimation model.
However, this assumption is not as critical in LB-SPR
compared to the other two methods because the CV of
growth variability can be adjusted in the former when
external information from a growth study is available.

The estimators were robust to the magnitude of recruit-
ment variability as long as the recruitments were random.
Trends in recruitment are more likely to be a problem
because they would be conflated with mortality.

Dome selectivity had a noticeable effect on the bias
only when F/M was 0.25 or 1.0, due to the high abun-
dance of large individuals present in the population but
missing from the catch (Figure 3). The length-based meth-
ods all assume logistic selectivity so that dome selectivity
is conflated with high mortality. Thus, dome selectivity
must be estimated externally. For example, Ehrhardt and
Ault (1992) developed a modified version of the BHE to
estimate mortality when there is an upper length trunca-
tion in the LFD of the catch (Ehrhardt and Ault 1992),
with that length of upper truncation estimated externally
and then provided to the equation. Simulations have
found the behavior of the Ehrhardt–Ault estimator to be
complex (Then et al. 2015). Contrary to the methods
tested in our study, the performance of their estimator
often worsened with higher growth variability. In some

cases, lower bias but higher variance was observed with
using the Ehrhardt–Ault compared to the original equa-
tion, although the best input length for upper truncation
to obtain minimum bias was often larger than the true
length of upper truncation. Then et al. (2015) did not rec-
ommend the Ehrhardt–Ault estimator for routine use.

At high F/M, low survival to large size-classes mini-
mizes the effect of dome selectivity. Then et al. (2015)
found a positive bias associated with the truncation of
large animals in the length distribution when using the
BHE for all mortality scenarios, but they assumed knife-
edge selection of small animals in their simulations. Our
simulations also examined the effect of left truncation for
the LCCC and the BHE when selectivity was not knife-
edged. In theory, Steep selectivity more closely corre-
sponds to the knife-edge selectivity assumption compared
to Gradual selectivity. However, all three methods (includ-
ing LB-SPR) were robust to different logistic selectivity
functions, as indicated by the small differences in perfor-
mance among truncation methods.

Sensitivity Analyses
We examined the estimators in the ideal situation with

large sample sizes and little observation error. The sensi-
tivity analysis indicated that the estimators were generally
robust to smaller sample sizes. We assumed that the gen-
erated data set was a random sample of animals from the
vulnerable population. In reality, data are generally

FIGURE 5. Relative percent bias (%Bias; left grid) and relative percent root mean square error (%RMSE; right grid) stratified by M/K (ratio of
natural mortality [M] to the von Bertalanffy growth rate parameter [K]), F/M (ratio of fishing mortality [F] to M), and growth variability. Only
methods B1 and L5 (defined in Table 2) are shown (text in the corners indicates the method). Numbers and horizontal lines in the violin plot indicate
median %Bias and %RMSE, and the shape of violin plot shows the distribution of values. Asterisks and shaded violin plots indicate the method with
the lowest median value in each grid cell (not subject to rounding error).
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collected in clusters from samples of fishing trips or from
schools of animals, often with similar lengths and ages
within trips or schools. Cluster sampling reduces the effec-
tive sample size of the observed LFD and increases the
uncertainty surrounding estimates of mortality (Chih
2011). With knowledge of the sampling program used to
collect the data, the effective sample size can be estimated
via bootstrapping methods (Stewart and Hamel 2014) or
design-based formulas (Thorson 2014). Stewart and Hamel
(2014) suggested that the number of sampled trips may be
an appropriate proxy for the effective sample size. This
suggestion may be applicable in a data-limited context if
the ratio of within- to among-trip variance is low due to
the cluster effect. The effective sample size would be
important to determine if an appropriate range of size-
classes has been sampled, as the sampling would affect the
shape of the LFD used to apply the length truncation
methods for the LCCC and BHE and to estimate selectiv-
ity in LB-SPR.

The performance of the LCCC and BHE did not
appear to worsen with larger length-bins, and in some
cases (with low F/M), performance was better. Although
sensitivity of length-bins can be examined in individual
applications of the equilibrium mortality estimators, low
sample sizes may preclude the use of small length-bins to
describe the length composition of the catch in data-lim-
ited situations.

Our study design assumed that information on growth
was stochastic, arising from a bivariate distribution with a

highly negative correlation often associated with estimat-
ing parameters of the von Bertalanffy growth equa-
tion (Gallucci and Quinn 1979). Sensitivity analyses can
be used to determine the influence of growth parameters
on mortality estimation. An overestimate of L∞ may cre-
ate a positive bias for the estimate of total mortality
because fewer large animals are observed than are
expected. We examined the correlation of total mortality
estimates with the assumed values of L∞ and K (Fig-
ure 9). In light of the systematic biases of the estimators
among different M/K scenarios, overestimates of mortality
may be more likely and underestimates may be less likely
when M/K is low. Similarly, overestimates of mortality
are unlikely when M/K and F/M are high. Such informa-
tion could be used to assess the direction and magnitude
of estimation error based on mis-specified growth in future
applications of the mortality estimators.

Mortality estimates with length-based methods are
dependent on the values of growth parameters. The
quality of external growth estimates is affected by,
among other things, the choice of the growth model
(Gwinn et al. 2010) and the representativeness of the
size-at-age data to the population when sampling gears
with different selectivity patterns are used (Wilson et al.
2015); this should be assessed in future applications of
length-based methods. If size-at-age data are available,
integrated modeling approaches for estimating growth
simultaneously with mortality and selectivity also exist
(Taylor et al. 2005).

FIGURE 6. Relative percent bias (%Bias; left grid) and relative percent root mean square error (%RMSE; right grid) stratified by M/K (ratio of
natural mortality [M] to the von Bertalanffy growth rate parameter [K]), F/M (ratio of fishing mortality [F] to M), and recruitment variability. Only
methods B1 and L5 (defined in Table 2) are shown (text in the corners indicates the method). Numbers and horizontal lines in the violin plot indicate
median %Bias and %RMSE, and the shape of violin plot shows the distribution of values. Asterisks and shaded violin plots indicate the method with
the lowest median value in each grid cell (not subject to rounding error).
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Life History Considerations
Overall, our study found that life history as expressed

in the M/K ratio was a good predictor of the performance
of length-based mortality estimators, with better

performance in high-M/K scenarios compared to low-M/K
scenarios. This result supports those in previous studies of
length-based methods (e.g., Hordyk et al. 2015b). Two
features unique to low-M/K populations may result in

FIGURE 7. Relative percent bias (%Bias; left grid) and relative percent root mean square error (%RMSE; right grid) stratified by M/K (ratio of
natural mortality [M] to the von Bertalanffy growth rate parameter [K]), F/M (ratio of fishing mortality [F] to M), and selectivity. Only methods B1
and L5 (defined in Table 2) are shown (text in the corners indicates the method). Numbers and horizontal lines in the violin plot indicate median %
Bias and %RMSE, and the shape of violin plot shows the distribution of values. Asterisks and shaded violin plots indicate the method with the lowest
median value in each grid cell (not subject to rounding error).

FIGURE 8. The effect of bin width on relative percent bias (%Bias; left grid) and relative percent root mean square error (%RMSE; right grid) for
the length-based estimators. Only methods B1 and L5 (defined in Table 2) are shown (text in the corners indicates the method). Each line represents
individual factorial combinations stratified in separate cells by M/K (ratio of natural mortality [M] to the von Bertalanffy growth rate parameter [K])
and F/M (ratio of fishing mortality [F] to M).
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their poor performance. First, the protracted ascending
limb of the length composition in the population conflates
selectivity with abundance at length. It may be difficult to
select appropriate truncation lengths or estimate selectiv-
ity. Second, there is a high abundance of large animals
from the “pile-up” effect. In a low-M/K population, a
large age range is encompassed in a small spectrum of
lengths, and the length structure is a poor proxy for the
age structure of the population. We recommend caution
when using length-based methods in low-M/K situations,
as the results are likely to be positively biased even in
equilibrium situations. From a management standpoint,
this behavior can dictate data collection priorities for
alternative data types in assessments of low-M/K stocks.
In a data-limited context, meta-analyses can be used to
identify taxa with low M/K ratios (Prince et al. 2015a).
Nevertheless, if length-based methods are to be used, our
study suggests that classical methods (LCCC and BHE)
remain viable options for mortality estimation.

CONCLUSIONS
Our study examined the performance of three length-

based mortality estimators. When M/K is low (M/K = 0.5
in our simulation), we recommend using the BHE with
half-peak abundance as the Lc, although the method is
still likely to be positively biased and imprecise. When

M/K is high (M/K = 2 in our simulation), both the LCCC
and BHE performed well and were robust to variation in
commonly used truncation rules. For optimal perfor-
mance, the length-based estimators require some a priori
judgment of the life history and expected fishing pressure
on the stock of interest. We recommend caution in using
length-based methods for populations with low M/K.
Overall, this study demonstrated that relative to LB-SPR,
both the LCCC and BHE produced less-biased and more
precise estimates of total mortality. Although LB-SPR did
not perform as well as the other two methods when esti-
mating mortality, the method has an advantage of provid-
ing estimates of selectivity if desired. The LCCC and BHE
methods performed comparably, and no firm recommen-
dation is made for choosing between these two methods.
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Appendix: Derivation of the Length-Converted Catch Curve

The age-based catch curve is of the form

logeðCtÞ ¼ a� Zt; (A.1)

where Ct is the catch at age t; Z is total mortality; and a
is a constant. In a length frequency distribution (LFD),
length-bins of larger animals contain more age-groups
than bins with smaller ones due to the decreasing growth
rate of older individuals. Thus, abundance at size in an
equilibrium population is a function of individual growth
rate and mortality over time (Ricker 1975; Van Sickle
1977; Pauly 1983). Assuming the length-bins are narrow,
the length-based catch curve is of the form

loge Ci
dLti

dt

� �
¼ a� Zti; (A.2)

where Ci is the catch in the ith length-bin; ti is the age at
the midpoint of the ith length-bin in the LFD (assuming
deterministic growth); Lti ¼ L1f1� exp½�Kðti � t0Þ�g is
the von Bertalanffy growth equation for length at age ti;
and

dLti
dt is the instantaneous growth rate evaluated at the

corresponding midpoint of the ith length-bin. The follow-
ing substitutions are made:

loge
dLti

dt

� �
¼ logeðKL1Þ � Kðti � t0Þ; (A.3)

and t0 ¼ Kðti � t0Þ; (A.4)

where t0 is the relative age defined as a variable transfor-
mation. After substitution and simplification, equa-
tion (A.2) reduces to

logeðCt0 Þ ¼ ~aþ 1� Z
K

� �
t0; (A.5)

where ~a is a nuisance parameter of all constant terms.
Equation (A.5) is a linear equation of the form

logeðCt0 Þ ¼ ~aþ bt0; (A.6)

where ~a and b are the intercept and slope, respectively.
Using equations (A.5) and (A.6), total mortality (Z) is
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solved: Z ¼ Kð1� bÞ: (A.7)

From an LFD, the midpoint of the length-bins can
be converted to relative ages t0, also defined by the von
Bertalanffy growth equation:

t0 ¼ � loge
�
1� Lti

L1

�
; (A.8)

with the logarithm of the catch in that length-bin used in
a linear regression to estimate the slope of equation (A.6)
and, thus, Z in equation (A.7).
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